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Scheme II 

The results of the additions to 1 are presented in Table I. In 
two reactions, as noted, recovered excess diene was found to 
have incorporated no deuterium, showing carbenium-ion 
formation to be irreversible. While the products have been 
shown to be stable through the analytical procedure, minor 
incursions of allylic isomerization concurrent with addition 
cannot be excluded at this point. The significance of the results, 
however, is clear. 

1,2 is seen to predominate over 1,4 addition in all cases, by 
factors of from 1.6 to 3.5. These reactions thus proceed by a 
mechanism more complex than that of Scheme I, where a free 
dimethylallyl cation has equivalent electrophilic centers. 

Ion-paired intermediates are indicated.9 The simplest ra­
tionalization of the present findings is that deuteronation of 
the diene at C-I occurs from a molecule of undissociated DCl 
(possibly precomplexed) to give initially a carbenium chloride 
ion pair, 9, with the anion (doubtless complexed with another 
molecule of DCl in nonpolar media lc) associated at C-2, as 
shown in Scheme II. Interconversion with the isomeric ion pair 
having the chloride opposite C-4,10, at a rate not greatly faster 
than that of covalent collapse would produce 3 in excess of 4. 
Partial molecular addition, as suggested for several Brylnsted 
acid additions to olefins,10'1' could also contribute. A transition 
state with pronounced carbenium-ion character would be 
necessary, however, to explain exclusive addition to the less 
substituted double bond. Studies with cis-1,3-pentadiene and 
1,3-cyclohexadiene are in progress to provide further infor­
mation. 

The present results furnish a new perspective toward earlier 
findings on the addition of acids to norbornene (11). Stille11 

and Brown12 and co-workers have found through isotopic la­
beling that a variety of acids react with norbornene to produce 
unequal quantities of degenerate Wagner-Meerwein isomers. 
DCl in CH2Cl2 at - 7 8 0 C, for example, l2b gives 59 ± 2% 12 
and 37 ± 5% 13 (along with products arising from 6,2-hydride 
shift). Both authors have taken their data to disqualify a single 

-78° C 

symmetrically delocalized carbonium ion, 14, in these reac­
tions, in favor of a pair of interconverting classical ions, 15, 
trapped prior to equilibration. We consider this conclusion 
compromised by the present observation that pentadiene 1 

characteristically favors 1,2 addition by way of a cation which 
by itself is plainly symmetrically delocalized. Deuteronation 
(protonation) of norbornene to produce a bridged ion unsym-
metrically associated with its gegenion, 16, is as reasonable a 
pathway for these additions as the corresponding mechanism 
for 1 through 9. 
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13C NMR Assignment of the 
Side-Chain Methyls of C21 Steroids 

Sir: 

The 13C N M R spectrum1 of cholesterol (la) has been ana­
lyzed in detail and all signals were assigned unambiguously 
with the exception of C-26 and C-27. The recent work of 
Popjak2 who studied samples of 13C-enriched cholesterol ob­
tained biosynthetically from labeled mevalonate completed 
the interpretation of the spectrum. Their assignments of the 
terminal methyls are based on the knowledge of the hydroge-
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Figure 1. High-field region of the PND 13C NMR spectra of cholesterol (lower), 27-deuteriocholesterol (center), and desmosterol (upper). 

Table I. Chemical Shifts of the Side-Chain Carbon Atoms" 

1 a: R = H 

b: R =OH 

C R = D 

(pro-R) 

nation step3 of the A24 double bond in lanosterol (or desmo­
sterol (2)) to yield cholesterol ( la) , which was postulated as 
resulting from an addition of two hydrogens from the ,back side 
of the molecule. This was deduced from a radioactive labeling 
experiment followed by a microbiological oxidation of the re­
sulting cholesterol and further chemical degradation. However 
the possibility of a rearrangement during the oxigenation step 
could not be absolutely excluded. Furthermore, in contrast to 

CH3 

T 
R - C - - H 
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CH, 
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CH, 
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- C H -

(pro-R)-
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25.71 
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2 

18.62 

35.52 

36.06 

24.73 

125.04 

130.59 
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25.59 

4a 
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29.41 
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I 
CH2 

I I 
CH 

I 
-C-

CW-CH3 

trans-CH1 

a In parts per million from internal Me4Si determined at 25.2 MHz 
in CDCl3 on an XL-100A-12-FT. 

the cis addition of two hydrogens to the A24 double bond in 
lanosterol when performed by rat liver enzymes, it has also 
been shown that the reduction of the A24 bond in the precursor4 

of tigogenin in Digitalis lanata corresponds to a trans addition. 
Therefore, an independent test to confirm the 13C NMR as­
signments seemed desirable and is described herein. 

Kryptogenin5 (cholest-5-ene-3/?,26-diol-16,22-dione), which 
is known to have the 25/? configuration,6 was used to prepare 
a sample of cholesterol with a deuterium atom at one of the 
terminal methyls. The carbonyl groups of the natural product 
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were removed by successive Clemmensen and Wolff-Kishner 
reductions to afford 26-hydroxycholesterol (lb), mp 175-177 
0C (lit.7 177-178 0C), which was transformed into the cor­
responding ditosylate.8 Selective hydrolysis9 of the ester group 
at C-3 yielded the 26-monotosylate,10 which after treatment 
with lithium aluminium deuteride afforded 26-deuteriocho-
lesterol," mp 144-146 0C. Proper application of the sequence 
rules,12 in combination with the recently proposed nomen­
clature2 for cholesterol (la), shows that kryptogenin is a 
(257?)-27-hydroxy steroid and that the transformation of its 
derived (25/?)-27-tosylate affords (25S)-27-deuteriocho-
lesterol (Ic), even though, during all these reactions, the C-25 
chiral center is never touched. 

We found the C-26 and C-27 peaks of cholesterol (la) at 
22.54 and 22.78 ppm in the 13C NMR spectrum. In the deu-
terated sample (Figure 1) the lower field peak at 22.78 ppm 
was not observed owing to the quadrupole moment and the 
spin-spin coupling of the directly attached deuterium atom and 
corresponds, therefore, to the (pro-S)-methyl groups (C-27). 
The signal at 22.54 ppm remains unchanged and is due to the 
(pro-/?)-methyl group (C-26). These assignments are in 
agreement with those made from the biosynthetic experiments2 

and, therefore, it is now clear that no rearrangements occur 
when cholesterol is oxidized by Mycobacterium smegmatis.3 

The side-chain carbon atoms of cholesterol (la) show chemical 
shifts similar to those of the dihydroperezone (3) side chain13 

with the obvious exception of the carbon directly bonded to the 
rings (Table I). This allows also the assignment of the isopropyl 
methyl groups in the sesquiterpene. An analogous situation is 
found between the side chains of perezone (4a) and desmosterol 
(2), thus allowing also the definitive assignment of individual 
methyl groups. 

Although several hundred steroids14 have been analyzed by 
13C NMR, surprisingly no data appear to be available for 
desmosterol (2) and its spectrum was therefore recorded. It 
shows (Figure 1) the ring carbons and angular methyl groups15 

at essentially the same values found for cholesterol (la), while 
the side-chain carbons appear (Table I) as in perezone (4a). 
The isopropylidene methyl groups are assigned unambiguously 
using a sample of deuterioperezone (4b) obtained by a reg-
ioselective synthesis.16 The trans-methyl groups appears at 
25.65 ppm, while the cw-methyl is found at 17.61 ppm. 

The chiral center of dihydroperezone (3) has the same R 
configuration as C-20 in the steroids and this appears to be the 
main factor controlling the chemical shift difference between 
the isopropyl methyl groups which is observed13 even in 2,6-
dimethyloctane where the rings are replaced by a methyl 
group. Future biosynthetic studies on the hydrogenation of 
isopropylidene residues might be followed by deuterium la­
beling and 13C measurements. 
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The Unlikelihood of an 
Electron-Transfer (Haber-Weiss) Reaction 
between Superoxide and Peroxides 

Sir: 

While an increasing number of investigations have recently 
been directed toward the reactions of superoxide ion (O2

--) 
with a range of molecules,' "3 its fundamental reactivity is yet 
poorly understood. It has recently been proposed, and shown 
for at least one case, that ultimate products in mixtures of O2

--
with many molecules are the result of O2

-- decomposition 
products acting as oxidizing species or as very strong bases.4 

We report here on a very simple, but centrally important sys­
tem, O2

-- in the presence of peroxides. It is found that, while 
/erf-butyl hydroperoxide acts solely as a proton source toward 
O2

-- in toluene and pyridine, attack upon solvent by the per­
oxide anion occurs in acetonitrile, leading ultimately to prod­
ucts of peroxide decomposition. Additional studies, together 
with precedents from the literature, show that experimental 
support is lacking for the assumed electron-transfer process 
between O2

-- and peroxides. 
Both hydrogen peroxide and organic hydroperoxides un­

dergo electron transfer from Fe2+ (and other reduced metals) 
via 

ROOH -I- Fe2+ — RO- + HO" + Fe3+ (1) 

R = H or alkyl 

The evidence for this reaction is quite strong, and it has been 
studied in detail.56 By analogy, it has been generally accepted 
that a similar process occurs with O2

-- as the electron do-
n o r :2,3,7,8 

HOOH + O2-- — HO- + HO" + O2 (2) 

Both eq 1 and 2 have been discussed in terms of biological ef­
fects of H2O2 (and its destructiveness in systems in which it 
is produced) by generating the reactive HO- radical.8-9 

Noting the absence of direct evidence for reaction 2, Peters 
and Foote recently examined the reaction of f-BuOOH with 
O2

-- in acetonitrile.10 They observed rapid O2 evolution and 
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